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Abstract Conditionals like ‘‘birds fly—if bird then fly’’

are crucial for commonsense reasoning. In this technical

project report we show that conditional logics provide a

powerful formal framework that helps understanding if-

then sentences in a way that is much closer to human

reasoning than classical logic and allows for high-quality

reasoning methods. We describe methods that inductively

generate models from conditional knowledge bases. For

this, we use both qualitative (like preferential models) and

semi-quantitative (like Spohn’s ranking functions) seman-

tics. We show similarities and differences between the

resulting inference relations with respect to formal prop-

erties. We further report on two graphical methods on top

of the ranking approaches which allow to decompose the

models into smaller, more feasible components and allow

for local inferences.

Keywords Conditionals � Nonmonotonic reasoning �
Induction � System P � Networks � Ordinal conditional

function � Conditional structures

1 Introduction

The Wason selection task [34, 35] became famous for

proving experimentally that people are poor deductive

reasoners. In this task, people were presented with cards

showing a letter on one side and a number on the other.

Then, they were asked to validate the following (condi-

tional) statement by turning as few cards as necessary: ‘‘If

there is a vowel on the front side of the card, then there is

an even number on its back side’’. Figure 1 shows an

exemplary set of cards for the Wason selection task.

The card showing ‘‘A’’ was turned by nearly all people

(which is correct) and the card showing ‘‘G’’ was turned by

only a small percentage of the people (of course, not

everybody can be expected to be a good deductive rea-

soner). Problems with classical logic became obvious when

considering the frequencies with which the cards showing

‘‘7’’ and ‘‘4’’, resp., were turned by the test persons – far

more persons turned ‘‘4’’ than ‘‘7’’, which is incompatible

with deductive reasoning. By turning ‘‘7’’, the contraposi-

tive form of the statement under consideration can be

validated, so turning ‘‘7’’ is a must from the viewpoint of

deduction. On the other hand, turning ‘‘4’’ is vacuous since

this card would validate the statement in any case.

The results from such experiments have long been used

to blame humans for being poor logicians, but other the-

ories have been brought forward to explain human beha-

viour in the Wason task that found logic inadequate for

evaluating humans, e.g., relevance theory [29], or a prob-

abilistic theory that is based on information gain and claims

to be even more general [25]. Quite recently, it has been

pointed out that only classical logic is inadequate but other

logics may help to model human behaviour in the Wason

task: For instance in [4], logic programming under the

weak completion semantics has been applied to the Wason
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task and yields interesting results that distinguish between

the abstract Wason task (as described above) and an ana-

logical task having a social context. In addition, the authors

also show relationships to the suppression task and

abduction. Similarly, Furbach and Schon [8] succeeded in

making a difference to previous findings by using deontic

logic, interpreting the sentence ‘‘If there is a vowel on the

front side of the card, then there is an even number on its

back side’’ as a normative rule. Nevertheless, still the

question remains what general kinds of logic are suitable to

model human behaviour for the Wason selection task, even

if no further assumptions on the context are made.

As also [4] and [8] noticed, the statement to be validated

in the Wason selection task is a conditional one, so the

most obvious candidate for looking for alternatives would

be the framework of conditional logics. Although much

work has been done in conditional logics both from sym-

bolic and probabilistic points of views (cf., e.g., [1, 5, 21])

the understanding of an ‘‘if-then’’ statement as a material

implication or as a ‘‘directed rule’’ is still the prevalent one.

Conditionals as formal entities in the form ðwj/Þ establish

relationships between propositions / and w that need

suitable semantics to be interpreted, and it depends on the

specific kind of semantics which understanding of the

conditional is appropriate. Popular semantics for condi-

tionals in artificial intelligence are ranked models such as

Spohn’s ranking functions [10, 30] (expressing plausibility,

normality, and the like), modal logics [11] (expressing

reachability), and—with quite different techniques and

semantical annotations—probabilities [26]. But generally,

the main difference between conditionals ðwj/Þ and

material implications / ) w as formal representations of

statements of the form ‘‘if / then w’’ is that the acceptance

of a conditional does not depend only on the truth values of

its premise / and its conclusion w (so it is not material).

Rather, it establishes a meaningful link between premise

and conclusion that can be verified (in case of / ^ w) or

falsified (in case of / ^ :w), but is vacuous if :/ holds.

This makes conditionals three-valued logical entities, far

more expressive than the two-valued material implication.

Conditionals are also different from strict or nonmonotonic

rules used in [4] because they cannot be blocked, it is rather

that the rule itself is defeasible.

Coming back to the Wason selection task, let us see how

a basic, but truly conditional-logical view may help to

understand why people turned the cards showing ‘‘7’’ and

‘‘4’’ in this order: The ‘‘4’’ may verify the conditional

ðeven numberjvowelÞ, expressing that ‘‘If a vowel is

observed, then an even number on the back side of the card

is expected, normal, usual, etc’’; please note that we do not

presuppose a specific semantics here, even a deontic one as

in [8] can be assumed. So, ‘‘4’’ is not irrelevant for the

conditional while ‘‘7’’ may falsify the conditional but

conditionals may have exceptions, so even seeing a vowel

on the back side of ‘‘7’’ would not completely invalidate

the conditional. In any case, contraposition does not hold in

general for conditional reasoning such that there is no

conditional-logical obligation to turn the card. Summariz-

ing these observations, conditionals in a very general sense

may not completely explain human behaviour in the Wason

selection task, but they provide a logic that is compatible

with it.

The project ‘‘Rational reasoning with conditionals and

probabilities’’ in the DFG Priority Programme 1516 ‘‘New

Frameworks of Rationality’’ investigates rational reasoning

with conditionals, using conditionals as a common inter-

face between different approaches for inference since they

may encode crucial guidelines for rational human reason-

ing, as described above. In particular, being able to use

conditionals both in qualitative and quantitative ways

provides a perspective that helps to overcome the limits of

specific frameworks. Here we report on the computer sci-

ence part of this project; in particular, we show how con-

ditionals can serve as a base for qualitative and semi-

quantitative1 approaches to generate inference relations

from conditional knowledge bases. In this way, we illus-

trate that conditionals are not only suitable representations

of commonsense knowledge but that a variety of methods

and implementations are available to draw inferences from

knowledge bases consisting of conditionals.

First, we recall preferential models as a basic approach

for nonmonotonic inference in Sect. 2, and then show in

Sect. 3 how to generate preferential models inductively

using conditional structures and ranking approaches.

Finally, we show that network approaches can be used to

decompose the presented inductive task and associated

inference calculations into smaller, more feasible compo-

nents in Sect. 4. We conclude in Sect. 5.

2 Conditionals and Inference Mechanisms

We consider conditionals ðwj/Þ over a standard proposi-

tional language L defined from a finite set of atoms R, i.e.,

w;/ 2 L. A conditional ðwj/Þ can be used to encode a

nonmonotonic, defeasible inference /j�w—‘‘from /, w
can be defeasibly concluded’’. A finite set of conditionals is

called a conditional knowledge base. A major idea in

Fig. 1 Exemplary card set for the Wason selection task

1 i.e., we use numbers in a qualitative way.
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nonmonotonic reasoning is to rank propositional models

according to preference relations and draw conclusions by

considering only the most preferred (i.e., the most plausi-

ble) ones.

A preferential model [23] is a triplet of a set of states, a

satisfaction relation and a preferential relation. Here we use

the set X of (propositional) interpretations (or possible

worlds) as states and classical satisfaction � as satisfaction

relation, so we use classical logic as a base. A preferential

model induces a nonmonotonic inference relation j�
between formulas such that /j�w iff for all models of

/ ^ :w there is a model of / ^ w that is strictly preferred

with respect to the preferential relation. In terms of con-

ditionals ðwj/Þ, this means that verification (/ ^ w) is

more plausible than falsification (/ ^ :w). This is the

framework we build upon for reasoning inductively from

conditional knowledge bases. ‘‘Inductive’’ here means that

we aim at completing the partial knowledge given by the

knowledge base by computing a preferential model. The

preferential relation will be induced by the conditional

knowledge base in various ways.

Given that the satisfaction relation of the preferential

model behaves like the classical satisfaction relation and

the preference relation is transitive and does not allow

endless descending chains, preferential models ensure

inference relations of high quality, satisfying the well-ap-

preciated axiom system P [1, 18, 23] consisting of Re-

flexivity, Left Logical Equivalence, Right Weakening,

Cautious Monotony, Cut and Or (cf. Fig. 2). This system

has not only proven to be of high formal quality, but also is

most useful when describing human reasoning: Empirical

studies show that human reasoners make use of each of the

properties of System P [3, 28], so even with recent work

challenging that human reasoners use System P as an

inference calculus [19], each property is useful for the

inference relations we consider in this paper. We here

discuss approaches of inference mechanisms that allow us

to set up inference relations which satisfy System P (and

further properties) and hence are capable of realising

properties of commonsense reasoning.

We use the car start problem [10] as a running example

for setting up a conditional knowledge base: A car usually

will start (s) if the battery is charged (b), otherwise it

usually will not start (s). We also know that a car usually

will start if the fuel tank is sufficiently filled (f), otherwise

it usually will not start. Additionally, we know that if the

battery is charged and the fuel tank is empty, the car

usually will not start, and if the battery is discharged and

the fuel tank is filled, the car usually will not start. We

usually switch off the headlights overnight (h) and the fuel-

tank usually is filled. If the headlights have been left

switched on overnight (h), the battery will usually be

empty; if we have switched the headlights off (h), the

battery usually will be charged. This is formalised in the

knowledge base

R ¼
d1 : ðsjbÞ; d2 : ðsjbÞ; d3 : ðsjf Þ; d4 : ðsjf Þ;
d5 : ðsjbf Þ; d6 : ðsjbf Þ; d7 : ðhj>Þ; d8 : ðf j>Þ;
d9 : ðbjhÞ; d10 : ðbjhÞ

8
><

>:

9
>=

>;
:

3 Inductive Conditional Reasoning

The information given by a knowledge base usually is

incomplete, i.e., not every situation is specified directly by

the conditionals. In the car start example, for instance, it is

not stated whether the car will start if both battery and fuel-

tank are empty. Here inductive methods are used to fill up

missing information, creating the preference relations

needed for the preferential model.

Every inductive method presented in the following

generates a preferential model of some sort based on the

knowledge base. This means the preferential model and

hence the resulting preferential inference relation are based

mainly on the information encoded in the conditionals of

the knowledge base.

3.1 Qualitative Inference by Conditional Structures

We start with a rather simple approach based on condi-

tional structures to make core ideas of conditional rea-

soning understandable. Given a knowledge base

R ¼ fðw1j/1Þ; . . .; ðwnj/nÞg we assign to each ðwij/iÞ 2
R a pair of abstract symbols aþi and a�i to illustrate the

impact of conditionals on worlds. To connect a world and

the impact of a conditional to this world we define the

function ri by riðxÞ :¼ aþi iff x � / ^ w, riðxÞ :¼ a�i iff

x � / ^ :w and riðxÞ :¼ 1 iff x � :/, for each

1� i� n. So, aþi (a�i ) indicates that x verifies (falsifies)

Fig. 2 Axioms of system P
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ðwij/iÞ, and 1 corresponds to non-applicability of the

conditional. For a possible world x, the conditional

structure rðxÞ is the combination of all these symbols,

rðxÞ ¼
Qn

i¼1 riðxÞ (where product simply means con-

catenation) [12, 13]. In the car start example bf hs has the

conditional structure rðbf hsÞ ¼ aþ1 a
�
4 a

�
5 a

�
7 a

�
8 a

�
9 because it

verifies d1, falsifies d4,d5,d7,d8 and d9, while d2, d3, d6 and

d10 are not applicable.

With conditional structures we can set up a preferential

relation with respect to verification or falsification of condi-

tionals, or both. Here we use a penalising approach, i.e., a world

x is structurally preferred to a world x0 (written x �r x0), iff

x0 falsifies strictly more (in terms of set inclusion) conditionals

than x. Figure 3 shows an excerpt of the structural preferences

for the car start example, where we have, e.g., bf h s �r bf hs

since bf h s falsifies d1 and d8, whereas bf hs falsifies d1, d8, d7

and d9. From this relation we obtain a preferential model and

thereby an inference relation j� r
R, called structural inference,

as stated above, such that /j� r
Rw iff for every world that fal-

sifies the conditional ðwj/Þ we find a world that verifies the

conditional and the latter is preferred to the former [12, 17]. In

the car start example, e.g., we have hj� r
Rs because for every

model ofhs, i.e., the worldsbf hs,bf hs,bf hs andb f hs, we find

a structurally preferred model of hs, namely bf hs (cf. Fig. 3).

An implementation of inference by conditional structures can

be found in the TWEETY-library [32].

Being set up by a preferential model that meets the

criteria sketched in Sect. 2, i.e., the satisfaction is classical,

the preferential relation is irreflexive and transitive and the

set of models is finite, the inference relation j� r
Rsatisfies

System P. Structural inference compares the complete

conditional structures of the respective worlds. Therefore,

for the generation of the preference relation as well as for

inference tasks, it is ensured that every conditional in the

knowledge base is taken into account.

However, the preferential relation �r is not total, so we

have incomparable worlds, e.g., in the car start example the

worlds bfhs with the conditional structure rðbfhsÞ ¼
aþ1 a

þ
3 a

�
7 a

�
8 a

þ
9 and bf hs with rðbf hsÞ ¼ a�1 a

�
3 a

þ
7 a

þ
8 a

þ
9 can-

not be compared using �r. Therefore, it may happen that

we cannot infer all conditionals in the knowledge base

(thus violating the property of being able to validate all

conditionals in the knowledge base, known as Direct

Inference [22]). To illustrate this we use the simple Tweety

example with a knowledge base RTweety ¼ fðf jbÞ; ðf jpÞ;
ðbjpÞg formalising the rules that birds usually can fly,

penguins usually cannot fly and penguins usually are birds

(with structural preferences given in Fig. 4). Here for the

world pbf there is no �r-preferred world x � pf and thus

we have p 6j� r
Rf , though ðf jpÞ 2 RTweety [14, 17]. So we

obtain that comparing conditional structures is not enough

and, in case of incomparable worlds, we need to weigh the

severity of falsification of rules. For this, we broaden our

semantic scope to the more expressive framework of

ordinal conditional functions (OCF).

3.2 Semi-Quantitative Inference by OCF

An ordinal conditional function (OCF), also known as

ranking function, is a function that assigns a rank of dis-

belief or implausibility to each world, i.e., the higher the

rank of a world, the less plausible this world is.

Definition 1 (Ranking function (OCF, [30, 31])) An Or-

dinal Conditional Function (OCF) is a function j : X !
N0 [ f1g s.t. the set fx j jðxÞ ¼ 0g is not empty, i.e.,

there have to be maximally plausible worlds.

The rank of a formula / 2 L is the minimal rank of all

worlds that satisfy /, jð/Þ ¼ minfjðxÞ jx � /g. The

rank of a conditional ðwj/Þ 2 ðLjLÞ is defined by

jðwj/Þ ¼ jð/ ^ wÞ � jð/Þ. An OCF accepts a conditional

ðwj/Þ iff its verification is strictly more plausible than its

falsification, formally j � ðwj/Þ iff jð/ ^ wÞ\jð/^ :wÞ.
An OCF is admissible with respect to a knowledge base R
iff j � ðwj/Þ for all ðwj/Þ 2 R. The inference relation of

OCFs is constructed by preferential models with a total

preference relation \j � X	 X s.t. x\jx0 iff

jðxÞ\jðx0Þ and so a formula / infers a formula w via j,

/j� jw, iff jð/ ^ wÞ\jð/ ^ :wÞ [12, 14, 17, 31]. For

OCFs, acceptance is closely connected to inference, since

we have /j� jw iff j � ðwj/Þ which gives us that for an

R-admissible j, j� j satisfies Direct Inference, in contrast

to j� r
R. Being set up from a preferential model, every j-

inference satisfies System P. It has also been shown that

j� j satisfies Rational Monotony (RM), i.e., j� j behaves

Fig. 3 Excerpt from the conditional structures and preferences for the

car start example (sources are preferred to targets)

Fig. 4 Structural preferences in the Tweety example
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monotonously with respect to formulas v of which the

contrary is not inferable [17, 20], formally

/j� v and / 6j� :w imply / ^ wj� v: ðRMÞ

OCF reasoning is semi-quantitative in that numbers are

used for degrees of implausibility, but employed in a

qualitative way for comparisons. We recall two established

approaches for generating an OCF inductively.

As defined in Sect. 1 we use only ‘‘purely qualitative’’

conditionals, that is, knowledge bases that encode defea-

sible rules of the type of ‘‘if / then usually w’’ without any

further, quantitative addendum to inductively generate the

semi-quantitative OCF representation. This means that, a

priori, each conditional is equally important and the

approaches generate a ranked model of this equally

important conditionals which, a posteriori, provides a

plausibility ranking of the possible worlds. For ranking

approaches that also allow for semi-quantitative knowledge

bases, i.e., knowledge bases which implement how strongly

or firmly a conditional rule is believed, see [9, 16, 31].

System Z [27] is an inductive approach to generate the

unique minimal admissible ranking function jZR to a

knowledge base R. This system partitions the knowledge

base algorithmically into subsets ordered by the degree of

exceptionality of the rule. The ranking function assigns to

each world the rank of the most exceptional falsified rule,

and the exceptionality of a world is used as its implausi-

bility rank (confer [27] for a complete description of the

algorithm). Table 2 (upper row) gives the System Z ranking

function for the car start example. For System Z we obtain

an inference relation j� Z
R as defined for OCFs in general

which satisfies System P and (RM) as described above.

Being an OCF, System Z satisfies Direct Inference and

therefore resolves the unintuitivity we found for structural

inference, but just taking the most exceptional rules into

account results in a somewhat flat inference, as we can see

in the car start example: Here we have bfhs �r bfhs

because the latter falsifies d1 and d3 additionally to bfhs,

but since System Z just uses the maximum we have

jðbfhsÞ ¼ jðbfhsÞ ¼ 2, so we obtain that System Z and

structural inference are different in general [17].

Also, System Z does not allow for subclass inheritance

of exceptional subclasses, i.e., if a subclass is exceptional

with respect to a single property of the superclass, it does

not inherit any property of the superclass. This is called the

Drowning Problem [2, 27]. It can be illustrated by

extending the Tweety example with the rule that birds

usually have wings, so our knowledge base for this

example is fðf jbÞ; ðf jpÞ; ðbjpÞ; ðwjbÞg. For System Z we get

the rankings given in Table 3 and see that we cannot infer

that penguins have wings since jðpwÞ ¼ 1 ¼ jðpwÞ and

therefore p 6j� Z
R w.

Overall, we obtain that System Z allows for different

inferences than inference by conditional structures. How-

ever, the Drowning Problem still results in unintuitive

inferences since the somewhat flat inference bears the risk

that some important rules may be neglected when con-

structing the ranking function jZR.

c-representations: Comparing worlds by their condi-

tional structure only did not lead to an entirely satisfactory

inference relation. The same holds for weighing the falsi-

fication of conditionals by the most exceptional condi-

tional. With the approach of c-representations [12, 13], we

develop structural inference further and assign an individ-

ual impact j�i 2 N0 as abstract weight to each conditional

in the knowledge base R ¼ fðw1j/1Þ; . . .; ðwnj/nÞg. The

rank of a world is the combined impact of all falsified

conditionals, so a c-representation jcR is an OCF defined by

jcRðxÞ ¼
X

x�/i^:wi

j�i ; ð1Þ

where the impacts j�i 2 N0 are chosen such that jcR is

admissible with respect to R. This is obtained if the

impacts satisfy the following system of in Eqs. [12, 13]:

j�i [ min
x2X

x�/i^wi

X

1� j� n;j 6¼i

x�/j^:wj

j�j

8
>>><

>>>:

9
>>>=

>>>;

� min
x2X

x�/i^:wi

X

1� j� n;j 6¼i

x�/j^:wj

j�j

8
>>><

>>>:

9
>>>=

>>>;

:

So we generate a c-represention by solving the above

system of in equations and by this setting the impacts to

values such that they satisfy the system. We illustrate the

calculation of a c-representation using the knowledge base

from the Tweety example where we refer to (f|b) as con-

ditional 1, ðf jpÞ as conditional 2, etc. The verification resp.

falsification of these conditionals in the possible worlds of

this example are given in Table 1. We exemplarily set up

the first minimum in the first row of the system. Here, the

set of worlds that verify the conditional, i.e., x � bf , is the

set fpbfw; pbfw; pbfw; pbfwg. From these, the world pbfw

falsifies the conditional ðf jpÞ, only, hence (according to the

above introduced enumeration) the first sum of the mini-

mum is j�2 . The world pbfw falsfies no conditional,

therefore the respective sum is empty, that is, 0. Applying

these deliberations to all of the four worlds we get the term

minfj�2 ; j�2 þ j�4 ; 0; 0g and since each value j�i is non-

negative we obtain directly that the minimal value is 0.

Setting up the complete system in this way gives us

j�1 [ 0 � 0 j�2 [ min j�1 ; j
�
3

� �
� 0

j�4 [ 0 � 0 j�3 [ min j�1 ; j
�
2

� �
� 0

We now can set j�1 and j�4 to any integer greater than 0.

For this example, we settle for the minimal possible value,
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hence j�1 ¼ j�2 ¼ 1. In the next step, we plug in these

values into the system and obtain

j�1 ¼ 1 j�2 [ min 1; j�3
� �

j�4 ¼ 1 j�3 [ min 1; j�2
� �

:

Here we see that both j�2 and j�3 cannot be smaller than 1

and hence the minima for j�2 and j�3 can be solved to 1

which gives us

j�1 ¼ 1 j�2 [ 1

j�4 ¼ 1 j�3 [ 1:

Again, we use the smallest possible value and set j�2 ¼
j�3 ¼ 2 and hence obtain a solution for the system of in

equations. With these values we set up jcRðxÞ as given in

Table 3 (lower row) for the Tweety example according to

(1), so, for example, jcRðpbfwÞ ¼ j�2 ¼ 2 because pbfw

falsifies ðf jpÞ and no other conditional, and jcRðpbfwÞ ¼
j�2 þ j�3 ¼ 4 because pbfw falsifies ðf jpÞ and (b|p), only.

Each c-representation jcR gives rise to an inference rela-

tion j� c
R which, as ranking inference, satisfies System P and

(RM), and additionally Direct inference by construction, but

also ensures that every conditional from R is taken into

account, hence ensuring that no conditional ‘‘drowns’’ in the

effect of the others: For the car start example (lower row of

Table 2) we have jcRðbfhsÞ ¼ 2\3 ¼ jcRðbfhsÞ, a preference

also found in the conditional structures. The approach also

allows for an exceptional subclass to inherit properties of its

superclass; in the extended Tweety example (lower row of

Table 3) we have jcRðpwÞ ¼ 1\2 ¼ jcRðpwÞ and hence we

can infer that penguins have wings, pj� c
Rw.

Inference by c-representations is different in general

from inference by System Z, which can be seen formally

[17] as well as experimentally [33].

Until now we presented three different approaches for

inductive conditional reasoning which all allow for high quality

inferences. All approaches have exponential space complexity.

Having additional properties (Direct Inference, no Drowning

Problem) comes with the price of increasing time complexity,

which is exponential in the alphabet and at least polynomial in

the size of the knowledge base for each approach. In the fol-

lowing we introduce network approaches which promise to

reduce the space complexity by decomposing the ranking

function into smaller local components as well as reducing time

complexity by dividing the knowledge base into smaller sets.

4 Network Based Nonmonotonic Inference

In this section, we recall network approaches for storing

OCFs in local components and show how these can be set

up using inductive approaches to combine both the

T
a
b
le

1
In

te
rp

re
ta

ti
o

n
o

f
th

e
co

n
d

it
io

n
al

s
in

th
e

T
w

ee
ty

ex
am

p
le

,
w

h
er

e
‘‘
þ

’’
in

d
ic

at
es

v
er

ifi
ca

ti
o

n
,

‘‘
�

’’
in

d
ic

at
es

fa
ls

ifi
ca

ti
o

n
an

d
an

em
p

ty
ce

ll
in

d
ic

at
es

n
o

n
-a

p
p

li
ca

b
il

it
y

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

p
b
f
w

(f
|b

)
þ

þ
�

�
þ

þ
�

�
ð f
jp
Þ

�
�

þ
þ

�
�

þ
þ

(b
|p

)
þ

þ
þ

þ
�

�
�

�
(w

|b
)

þ
�

þ
�

þ
�

þ
�

284 Künstl Intell (2015) 29:279–289

123



inductive strength of the methods and the efficient prop-

erties of the network approaches. For this, we make use of

ideas from probabilistics, starting with Bayesian networks

[26]. Bayesian networks are used to (compactly) store the

joint probability distribution of a set of variables under

assumptions of conditional independence thus yielding the

possibility to save only local probability information and

calculate a global distribution by means of decomposition.

We recall Bayesian-style networks with local ranking

tables instead of local tables of probabilities [7, 10, 15, 16],

so called OCF-networks.

OCF-networks resemble Bayesian networks in that they

are directed acyclic graphs over the alphabet, with each

variable V 2 R being annotated with a conditional ranking

table jVðVjpaðVÞÞ of this variable given its parents paðVÞ.
Like Bayesian networks, these local OCF tables build up a

global OCF j, such that [16, Proposition 1]

jðxÞ ¼
X

V2R
jVðVðxÞjpaðVÞðxÞÞ; ð2Þ

where VðxÞ resp. paðVÞðxÞ indicates the outcome _v of V

with x � _v resp. the configuration _p of the variables in

paðVÞ with x � _p. Figure 5 is an OCF-network for the car

start example with respective local ranking tables and the

global ranking function that coincides with the OCF given

in Table 2 (lower row). The global OCF of an OCF-net-

work coincides with the local ranking tables on the

respective marginals, i.e., we have jðVðxÞjpaðVÞðxÞÞ ¼
jVðVðxÞjpaðVÞðxÞÞ for all x 2 X and all V 2 R [16,

Theorem 1], which allows us to use the lightweight local

representation instead of the global OCF, locally.

In an OCF-network, every vertex is conditionally (j)-

independent from its non-descendants given its parents [16,

Theorem 2] where conditional independence with respect

to a ranking function j is defined in full analogy to con-

ditional independence with respect to a probability distri-

bution [16, 26, 31]. This property, called the local directed

Markov Property, also is an important property of Bayesian

networks and allows for local calculations and local

inferences in the network.

OCF-networks can be combined with inductive reason-

ing such that we combine the benefits of the inductive

approach with the benefits of the network approach but

only if the knowledge base is restricted to contain single

elementary conditionals, i.e., conditionals whose conclu-

sion is a literal and whose premise is a conjunction of

literals. Based on this subclass of conditional knowledge

bases we can set up the network part using the algorithm of

[10], where the set of variables defines the set of vertices

and the set of edges is defined by the conditionals such that

there is an edge from V 0 to V iff V 0 appears in the premise

of a conditional with conclusion v or :v. For example, in

the car start knowledge base we have the conditional ðsjbf Þ
which gives us the edges B ! S and F ! S in Fig. 5. The

knowledge base R is split up into partitions RV for all

V 2 R such that RV contains all conditionals with con-

clusion v or v with the respective alphabet

RV ¼ fVg [ paðVÞ. For these partitions we generate local

ranking functions with an inductive approach. In the car

start example we get RB ¼ fðbjhÞ; ðbjhÞg as local knowl-

edge base for B and each of System Z or c-representations

gives us the ranking table jBðBjHÞ in Fig. 5 by calculating

jBð _bj _hÞ ¼ jRB
ð _b _hÞ � jRB

ð _hÞ for every outcome _b, _h of

B and H, respectively.

Overall, we see that we can use the approach of OCF-

networks in combination with approaches of inductive

reasoning (which is hereafter referred to as inductive OCF-

network) with ranking functions and conditional knowl-

edge bases. This combination allows us to use smaller

knowledge bases and smaller alphabets for the inductive

approaches, which gives us a significantly lower compu-

tational complexity. Also, the approach allows us to store

the global ranking functions in the local tables, which

reduces the space complexity of the inductive approaches,

too. But, despite their formal and computational advan-

tages, OCF-networks have two major drawbacks:

On the technical side, the local information stored in the

ranking table is not a ranking function but a table of con-

ditional ranking values. The global OCF coincides with

these values, but these values are conditional values only.

This means that to obtain the rank of a world or a formula,

we have to calculate the ranks of this world or formula with

respect to decomposition (2) and can not use the values in

the table directly. In the car start example, jðfsÞ is hence

calculated as jðfsÞ ¼ minfjHðhÞ þ jBðbjhÞþ jFðf Þ þ
jSðsjbf Þ; jHðhÞþ jBðbjhÞ þ jFðf Þ þ jSðsjbf Þ; jHðhÞ
þjBðbjhÞ þ jFðf Þþ
jSðsjbf Þ; jHðhÞ þ jBðbjhÞ þ jFðf Þ þ jSðsjbf Þg ¼ 0.

On the semantical side, the global OCF of an inductive

OCF-network may not be admissible with respect to the

original knowledge base. For the car start example, e.g., we

Table 2 Ranking functions jZR (upper row) and jcR (lower row) of the car start example

x b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s b f h s

jZRðxÞ 2 2 0 1 2 2 2 1 2 1 2 1 2 1 2 1

jcRðxÞ 2 3 0 1 4 3 2 1 2 1 2 1 2 1 2 1
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check if the conditional (s|f) is accepted by the global

ranking function by comparing jðfsÞ ¼ 0 to jðf sÞ ¼ 1 and

obtain that, for this example, the global OCF accepts the

conditional. As stated in [16], this cannot be guaranteed

because there may be a conditional ðwj/Þ in the knowledge

base which is accepted locally (which is ensured by the

local approaches), but the global OCF does not accept this

conditional. Formally this means we would have

jV � ðwj/Þ, that is, jVð/wÞ\jVð/wÞ, for a V 2 V but

jð/wÞ 6 \jð/wÞ, i.e., j�= ðwj/Þ. Figure 6 illustrates this

problem.

Another approach from probabilities that originates

from methods for computing probability distributions

according to the principle of maximum entropy, is the

approach of local event groups, or LEGs [24, 26]. An LEG

is a set of variables with a probability distribution. For

using this approach with OCFs, we define OCF-LEGs as

sets of variables with an associated OCF. An OCF-LEG

network [6] is a hypertree ðR; hRi; jiiki¼1Þ of OCF-LEGs

hRi; jii such that R ¼
Sk

i¼1 Ri with a global ranking

function j that coincides with the local ranking functions ji
on the respective subsets of variables Ri. The separators Si

are defined as Si ¼ Ri \
Si�1

j¼1 Rj. This network decomposes

the global ranking function such that we have

jðxÞ ¼
Xm

i¼1

jiðRiðxÞÞ �
Xm

i¼1

jiðSiðxÞÞ; ð3Þ

(‘‘factorisation property’’) according to [6, Theorem 1]. In

these networks, each OCF-LEG is conditionally indepen-

dent from its neighbours given the intersection of both sets

[6, Proposition 2]. This gives us that inferences, and thus

especially the acceptance of conditionals by the global

OCF, can be calculated locally in the OCF-LEG instead of

consulting the global OCF [6, Corollary 1]. Figure 7 shows

an OCF-LEG network for the car start example with local

OCFs generated with c-representations.
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OCF-LEG networks can be set up inductively from a

conditional knowledge base without language restrictions

[6, 24, 26]. Here, each conditional defines a hyperedge

which contains all variables of which literals are contained

in either the premise or the conclusion of the conditional.

After this step, a covering hypertree of this hypergraph is

set up using standard graph methods, and local knowledge

bases are formed with respect to the resulting hyperedges.

From these local knowledge bases local OCFs are calcu-

lated using one of the inductive methods described in Sect.

3.2 and finally, the global OCF of the network is calculated

according to the decomposition property (3), see [6] for

details.

It is ensured that the global OCF is admissible with

respect to each local knowledge base and hence with the

original knowledge base. Thus OCF-LEG networks over-

come the admissibility problem of OCF-networks, while

the network approach still reduces time and space com-

plexity as stated for network approaches in general.

5 Conclusion

In this article we pointed out the relevance of conditional

logics for modelling human reasoning adequately, as we

illustrated with the Wason selection task, and described

various approaches from the field of artificial intelligence

to process conditional information. We recalled preferen-

tial models as qualitative semantics and ordinal conditional

functions as (semi-) quantitative semantics for inductively

generating models from knowledge bases, the latter being

sets of conditionals that encode if-then-sentences. We

reported on three established approaches, structural infer-

ence, System Z and c-representations, which turned out to

generate three preferential inference relations that are dif-

ferent in general but complementary in various respects.

We combined the discussed inductive OCF-methods

with a network approach to obtain a semi-qualitative

variant of Bayesian networks, so called OCF-networks.

This approach inherits major properties from Bayesian

networks (e.g., conditional independence, decomposition)

and allows for inductive construction but fails to ensure

that the resulting OCF represents the original knowledge

base completely. The afterwards reported approach of

OCF-LEG networks uses hypergraphs instead of directed

acyclic graphs. With OCF-LEG network we were able to

overcome the problems that OCF-networks have with

partial knowledge bases, this approach allows us to con-

struct undirected graph structures based on knowledge

bases with a complete inductive representation of the

knowledge bases. This network has a decomposition

property by which the global OCF can be constructed by

local calculations and also comes with an independence

property, which together allow to shift most calculations to

small local ranking components. An implementation of the

OCF-LEG approach called AIRCONDITIONALS—Automated

Inductive Reasoning with Conditionals is publicly

accessible2.
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